Winter Survival

Mark McCaslin, Tim Woodward, and Dan Undersander

PLANT CULTURE

Greenhouse

ContainerBench, flat,or pot deep enough to allow root
development
MediaSand, soil or potting mix
Temp/light 24 to 30°C; 16+ hr daylength
No. of plants 25+ per replication
No. of reps3 to 6 replications
OtherSpray and fertilize as necessary

FIELD ESTABLISHMENT

Location	Transplant 8-12 week old plants to the field in late
	May or early June; direct seeding with hand thinning
	also acceptable
Spacing	0.3 to 0.4m x 0.6 to 1.0m
Culture	Maintain vigorous growth, control weeds and insects
Test length	Scores recorded in the spring, one year after
	establishment
Plant counts	Plant counts should be taken after last cut prior to first
	severe frost
Test location	Test sites should be limited to areas where the check
	varieties in classes 5-6 are dead or severely injured
	and where there will be clear differences between
	check varieties in class 2 vs. class 4.

CLIPPING MANAGEMENT

Nurseries should be intensively managed in the establishment year. They should be clipped at early to mid bud stage with a final clipping in mid September in MN or WI. Under this cutting regime the plant enters the winter in a stressed condition, allowing for more consistent winter injury in moderate winters. Local experience will provide information on which clipping dates provide the greatest separation among varieties.

RATING

- No injury, plant has uniform, symmetrical appearance, all shoots are about equal in length
- Some injury, the plant is symmetrical, but regrowth is slightly uneven
- Significant injury, regrowth varies in length, reduced vigor
- Severe injury, plant has sparse shoots, regrowth is very irregular, poor vigor
- Dead plant

An average score (ASI) can be calculated for each cultivar. A winter survival rating (1-6) can be assigned based on the ASI relative to the standard check cultivars.

CHECK CULTIVARS

Variety	Winter Survival rating	Typical ASI
ZG 9830	1	1.6
5262	2	2.2
WL325HQ	3	2.9
G-2852	4	3.6
Archer	5	4.0
Cuf 101	6	4.8

SCIENTISTS WITH EXPERTISE

NameAddress	.Mark McCaslin .Forage Genetics International P.O. Box 415 Prior Lake MN 55372
Email	.mccaslin@forage-genetics.com
	Washington State University Franklin County Courthouse 1016 N 4 th Pasco WA 99301-3706
Email	woodward @wsu.edu
Address	.Dan Undersander .Department of Agronomy 1575 Linden Drive Madison WI 53706
Email	.djunders@facstaff.wisc.edu

HELPFUL INFORMATION

A minimum of two location years is required for this test because of possible variation in the nature of winter injury over years and locations.

A successful test must show a significant difference (p=.95) between the class 2 and class 4 check cultivars. The class 6 checks must have an ASI of 4.6 or higher.

Care should be taken to read the winter survival test after all the plants have broken dormancy. Readings taken too early may underestimate winter survival in some dormant lines.

Degree of severity of this test may be increased by snow removal (2).

REFERENCES

- Knipe, W.C., C. Fox, F. Stanley, and J. Magsam. 1989. Relationship between cold injury and fall growth in alfalfa. Proc. 21st Central Alfalfa Imp. Conf. p.26
- McKensie, J.S. and J.G.N. Davidson. 1984. A stress test for assessing the winterhardiness of alfalfa in nortwestern Canada. Can. J. of Plant Sci. 64:917-924.
- Peterson, M, D. Barnes, W. Knipe, M. McCaslin, J. Moutray, D. Viands, and T. Woodward. 1989. A seven location study of the relationship between fall dormancy and winterhardiness in alfalfa. Proc. 21st Central Alfalfa Imp. Conf. p22-23.
- Sulc, R.M., K.A. Albrecht and S.H. Duke. 1989. Cold tolerance of nine alfalfa cultivars varying in degree of fall dormancy. Proc. 21 st Central Alfalfa Improvement Conf. p24-25.