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Alf lfAlfalfa

 Perennial, cool-season 
forage legumeforage legume

 Used for hay, silage, 
pasture

 In 2016, 58M tons were 
produced in the U.S., 
including 2.2M in WA including 2.2M in WA 
and 2.2M in UT (USDA 
NASS)



S ltSalt

 A 1989 study: Worldwide, 351.5 M hectares of farmland 
were afflicted with high salinity (6 2 M in the U S )were afflicted with high salinity (6.2 M in the U.S.)

 Primarily sodium salts, but also calcium, magnesium, 
potassium, iron, boron, sulphate, carbonate, and 
bicarbonate salts

 Saline soil is bad for crop productivity
 High soil salt draws water out of plants, subjecting them to 

osmotic stress similar to droughtosmotic stress similar to drought
 Salts taken up by the plant can also cause direct toxicity 

to plant tissues
 Global losses to salt in 2014 were estimated at $27 Bn
 Irrigation can increase field salinity, esp if drainage is poor
 Saline fields require additional irrigation water to flush out  Saline fields require additional irrigation water to flush out 

salt (leaching fraction)



Alf lf  d S ltAlfalfa and Salt

 Soil salinity is measured by soil electrical conductivity 
(EC)(EC)

 Typically measured in deciSiemens per meter (dS/m)

 Alfalfa is classified as moderately salt-sensitive Alfalfa is classified as moderately salt sensitive

 50% yield loss at 8.8 dS/m



C ti l B diConventional Breeding

 Phenotypic Selection
 Evaluate traits of each generation, select based on 

evaluations

 Accurate but slow

 Pedigree-Based Selection (BLUP)
 Generate an estimated breeding value (EBV) based on 

dipedigree

 Less accurate, but faster

 All (full) siblings receive the same EBVAll (full) siblings receive the same EBV



M k b d B diMarker-based Breeding

 Markers: Any locus that varies within your population 
that you know about and can test forthat you know about and can test for

 Discover markers and evaluate trait(s) of interest

 Determine association between markers and traits Determine association between markers and traits

 With this, subsequent generations can be selected 
based on markers
 Testing for markers is quick, can be done on young plants

 Questions:
 What type of marker?

 How are associations determined?



GBSGBS





GBS Pi liGBS Pipeline



Di  f k t it Discovery of marker-trait 
associations
 Conventional Marker-Assisted Selection (MAS)

 Probe each marker for significant association with trait

 Identify the top few markers (usually 5-10)

 Select for plants that have more of the “good” marker  Select for plants that have more of the good  marker 
variants, drive good markers to fixation

 Genomic Selection (GS)
 Train a statistical or machine-learning model using all the 

markers

 For plants under selection, generate a Genomic For plants under selection, generate a Genomic 
Estimated Breeding Value (GEBV) using the trained 
model, then select based on GEBVs

 Already being used for cattle breedingAlready being used for cattle breeding



G i  Genomic 
Selection 
Overview



C V lid tiCross-Validation

 How do we know our model will make good 
predictions before starting the breeding cycle?predictions before starting the breeding cycle?

 Cross-Validation

 Randomly assign plants to be part of the “training set”  Randomly assign plants to be part of the training set  
or the “validation set”

 Train the model based on the training set, see how 
ll it di t  th  t it  f th  lid ti  t  Th  i k well it predicts the traits of the validation set. Then pick 

a new training set and repeat. Accuracy is the 
average correlation between predicted and 
measured trait values over 800 replicatesmeasured trait values over 800 replicates

 Cross-validation also helps us choose between models 
and set the parameters of the model we’ve chosen



O  P j tOur Project

 Breed alfalfa for improved salt tolerance using 
Genomic SelectionGenomic Selection

 Starting material is 280 plants of already-improved 
alfalfa from Logan, UT
 Previously bred for salt survival via three cycles of 

phenotypic selection, one cycle for survival and forage 
production

 Traits of Interest: Health measures under salt stress in a 
field and greenhouse, yield under salt stress in a field

Fi ld  Si l  l t   i  C tl  D l  UT  h lth  Field: Single plants grown in Castle Dale, UT; health scores

 Field: 3 replicates, one plant per plot, in Othello, WA; yield

 Greehnouse; various growth metricsGreehnouse; various growth metrics



Field test for alfalfa salt tolerance is in progress in the Othello 
farm of WSU

Othello, WA

5/25/2016

6/23/2016 6/23/2016 6/23/2016



August, 2016



M k  Filt iMarker Filtering

 To be called, a locus must have a read depth of 1410 
reads (avg 5 reads per sample)reads (avg 5 reads per sample)

 To be used, markers had to pass the following tests:
 Quality score > 20Quality score > 20

 No more than 50% of plants unknown for that marker

 Less-frequent marker variant must be in at least 5% of 
plants

 To be used, plants must have no more than 50% of 
markers unknown



G t i  R ltGenotyping Results

 Genotyping-by-sequencing done on an Illumina HiSeq
2000  100bp single ended reads2000, 100bp single-ended reads

 240,444,007 sequencing reads obtained

 31 948 048 could be located within the genome  31,948,048 could be located within the genome 
(mapped)

 7,679 markers obtained, 4,315 passed filtering

 No plants were excluded for having too many missing 
marker genotypes

 Tested 8 models: Ridge regression  Bayesian ridge  Tested 8 models: Ridge regression, Bayesian ridge 
regression (BRR), Bayesian Lasso (BL), BayesA, BayesB, 
BayesC, reproducing kernel Hilbert Space (RKHS), 
support vector regression (SVR)support vector regression (SVR)
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N t bl  R ltNotable Results

 Highest accuracy is 43%, for SVR under rep 1 of the 
Othello datasetOthello dataset
 Minimum for GS to outperform other techniques is around 

30%

 Loci below an average of 5 reads per sample are not 
informative and add only noise

 Loci in the 5 15 reads/sample range may still be have  Loci in the 5-15 reads/sample range may still be have 
predictive value
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