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Alfalfa

®» Perennial, cool-season
forage legume

» Used for hay, silage,
pasture

» |n 2016, 58M tons were
produced in the U.S,,
Including 2.2M in WA
and 2.2M in UT (USDA
NASS)
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Salt

» A 1989 study: Worldwide, 351.5 M hectares of farmland
were afflicted with high salinity (6.2 M in the U.S.)

= Primarily sodium salts, but also calcium, magnesium,
potassium, iron, boron, sulphate, carbonate, and
bicarbonate salts

» Saline soll is bad for crop productivity

» High soil salt draws water out of plants, subjecting them to
osmotic stress similar to drought

» Salts taken up by the plant can also cause direct toxicity
to plant tissues

» Global losses to salt in 2014 were estimated at $27 Bn
®» [rrigation can increase field salinity, esp if drainage is poor

» Saline fields require additional irrigation water to flush out
salt (leaching fraction)




Alfalfa and Salt

Soil salinity is measured by solil electrical conductivity
(EC)

Typically measured in deciSiemens per meter (dS/m)
Alfalfa is classified as moderately salt-sensitive
50% yield loss at 8.8 dS/m



Conventional Breeding

®» Phenotypic Selection

®» Evaluate traits of each generation, select based on
evaluations

» Accurate but slow

» Pedigree-Based Selection (BLUP)

» (Generate an estimated breeding value (EBV) based on
pedigree

®» | ess accurate, but faster

» All (full) siblings receive the same EBV




Marker-based Breeding

» Markers: Any locus that varies within your population
that you know about and can test for

» Discover markers and evaluate trait(s) of interest
» Determine association between markers and traits

» \Vith this, subsequent generations can be selected
based on markers

» Testing for markers is quick, can be done on young plants

®» Questions:
» \What type of marker?

» How are associations determined?




GBS

» Resfriction digest genomic DNA, sequence ends of
restriction fragments

®» Reduced Representation - get sequence for about 1/;
of the genome in total

» FEffects from unsequencedregions can be captured
via linkage

= GBS can generate 10,000+ SNP / MNP markers
® | ess costly than whole-genome sequencing (WGS)



GBS Pipeline
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Discovery of marker-trait
associations

» Conventional Marker-Assisted Selection (MAS)
®» Probe each marker for significant association with trait
» |dentify the top few markers (usually 5-10)

» Select for plants that have more of the “good” marker
variants, drive good markers to fixation

®» Genomic Selection (GS)

®» Train a statistical or machine-learning model using all the
markers

» [or plants under selection, generate a Genomic
Estimated Breeding Value (GEBV) using the trained
model, then select based on GEBVs

» Already being used for cattle breeding
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Cross-Validation

» How do we know our model will make good
predictions before starting the breeding cycle?

» Cross-Validation

» Randomly assign plants to be part of the “training set”
or the “validation set”

» Train the model based on the training set, see how
well it predicts the traits of the validation set. Then pick
a new training set and repeat. Accuracy is the
average correlation between predicted and
measured trait values over 800 replicates

» Cross-validation also helps us choose between models
and set the parameters of the model we’ve chosen




Our Project

» Breed alfalfa for improved salt tolerance using
Genomic Selection

» Starting material is 280 plants of already-improved
alfalfa from Logan, UT

» Previously bred for salt survival via three cycles of
phenotypic selection, one cycle for survival and forage
production

» Traits of Interest;: Health measures under salt stress in a
field and greenhouse, yield under salt stress in a field

» Field: Single plants grown in Castle Dale, UT; health scores
» Field: 3 replicates, one plant per plot, in Othello, WA; yield

» Greehnouse; various growth metrics




Field test for alfalfa salt tolerance is in progress in the Othello
farm of WSU

Othello, WA
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August, 2016




Marker Filtering

» To be called, a locus must have a read depth of 1410
reads (avg 5 reads per sample)

» To be used, markers had to pass the following tests:

» Quality score > 20

®» No more than 50% of plants unknown for that marker

» | ess-frequent marker variant must be in at least 5% of
plants

» To be used, plants must have no more than 50% of
markers unknown




Genotyping Results

» Genotyping-by-sequencing done on an lllumina HiSeq
2000, 100bp single-ended reads

» 240,444,007 sequencing reads obtained

®» 31,948,048 could be located within the genome
(mapped)

= 7,679 markers obtained, 4,315 passed filtering

» No plants were excluded for having too many missing
marker genotypes

» Tested 8 models: Ridge regression, Bayesian ridge
regression (BRR), Bayesian Lasso (BL), BayesA, BayesB,
BayesC, reproducing kernel Hilbert Space (RKHS),
support vector regression (SVR)
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(A) Accuracy for raw greenhouse
measures using rrBLUP
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(D) Accuracy for raw greenhouse
measures using BayesCn
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(G) Accuracy for raw greenhouse
measures using RKHS
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(B) Accuracy for raw greenhouse
measures using BayesA
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(D) Accuracy for raw greenhouse
measures using Bayesian Lasso
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(H) Accuracy for raw greenhouse
measures using SVR
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(C) Accuracy for raw greenhouse
measures using BayesB
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(F) Accuracy for raw greenhouse
measures using Bayesian Ridge
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Logan Yield
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Notable Results

» Highest accuracy is 43%, for SVR under rep 1 of the
Othello dataset

» Minimum for GS to outperform other techniques is around
30%

®» | oci below an average of 5 reads per sample are not
informative and add only noise

®» | ociin the 5-15 reads/sample range may still be have
predictive value
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